Reconstruction of an Integrated Genome-Scale Co-Expression Network Reveals Key Modules Involved in Lung Adenocarcinoma

نویسندگان

  • Gholamreza Bidkhori
  • Zahra Narimani
  • Saman Hosseini Ashtiani
  • Ali Moeini
  • Abbas Nowzari-Dalini
  • Ali Masoudi-Nejad
چکیده

Our goal of this study was to reconstruct a "genome-scale co-expression network" and find important modules in lung adenocarcinoma so that we could identify the genes involved in lung adenocarcinoma. We integrated gene mutation, GWAS, CGH, array-CGH and SNP array data in order to identify important genes and loci in genome-scale. Afterwards, on the basis of the identified genes a co-expression network was reconstructed from the co-expression data. The reconstructed network was named "genome-scale co-expression network". As the next step, 23 key modules were disclosed through clustering. In this study a number of genes have been identified for the first time to be implicated in lung adenocarcinoma by analyzing the modules. The genes EGFR, PIK3CA, TAF15, XIAP, VAPB, Appl1, Rab5a, ARF4, CLPTM1L, SP4, ZNF124, LPP, FOXP1, SOX18, MSX2, NFE2L2, SMARCC1, TRA2B, CBX3, PRPF6, ATP6V1C1, MYBBP1A, MACF1, GRM2, TBXA2R, PRKAR2A, PTK2, PGF and MYO10 are among the genes that belong to modules 1 and 22. All these genes, being implicated in at least one of the phenomena, namely cell survival, proliferation and metastasis, have an over-expression pattern similar to that of EGFR. In few modules, the genes such as CCNA2 (Cyclin A2), CCNB2 (Cyclin B2), CDK1, CDK5, CDC27, CDCA5, CDCA8, ASPM, BUB1, KIF15, KIF2C, NEK2, NUSAP1, PRC1, SMC4, SYCE2, TFDP1, CDC42 and ARHGEF9 are present that play a crucial role in cell cycle progression. In addition to the mentioned genes, there are some other genes (i.e. DLGAP5, BIRC5, PSMD2, Src, TTK, SENP2, PSMD2, DOK2, FUS and etc.) in the modules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis

Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...

متن کامل

Multiscale Embedded Gene Co-expression Network Analysis

Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallm...

متن کامل

Gene Regulation Network Based Analysis Associated with TGF-beta Stimulation in Lung Adenocarcinoma Cells

Background: Transforming growth factor (TGF)-β is over-expressed in a wide variety of cancers such as lung adenocarcinoma. TGF-β plays a major role in cancer progression through regulating cancer cell proliferation and remodeling of the tumor micro-environment. However, it is still a great challenge to explain the phenotypic effects caused by TGF-β stimulation and the effect of TGF-β stimulatio...

متن کامل

Identification of key genes and pathways involved in vitiligo vulgaris by gene network analysis

Background and Aim: Vitiligo vulgaris is an acquired, chronic skin and hair condition characterized clinically by loss of melanin, which, if untreated, is typically progressive and irreversible. The aim of the present study was to identify potential genes involved in the pathogenesis of vitiligo. Methods: One dataset of mRNA expression in patients with vitiligo (GSE65127) were obtained from ...

متن کامل

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013